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Abstract

A micromechanical damage model considering progressive partial debonding is presented to investigate the effective
elastoplastic-damage behavior of partially debonded particle reinforced ductile matrix composites (PRDMCs). The
effective, evolutionary elastoplastic-damage responses of three-phase composites, consisting of perfectly bonded
spherical particles, partially debonded particles and a ductile matrix, are micromechanically derived on the basis of the
ensemble-volume averaging procedure and the first-order effects of eigenstrains. The effects of random dispersion of
particles are accommodated. Further, the evolutionary partial debonding mechanism is governed by the internal
stresses of spherical particles and the statistical behavior of the interfacial strength. Specifically, following Zhao and
Weng (1996), a partially debonded elastic spherical isotropic inclusion is replaced by an equivalent, transversely iso-
tropic yet perfectly bonded elastic spherical inclusion. The Weibull’s probabilistic function is employed to describe the
varying probability of progressive partial particle debonding. The proposed effective yield criterion, together with the
assumed overall associative plastic flow rule and the hardening law, forms the analytical framework for the estimation
of the effective elastoplastic-damage behavior of ductile matrix composites. Finally, the present predictions are com-
pared with the predictions based on Ju and Lee’s (2000) complete particle debonding model, other existing numerical
predictions, and available experimental data. It is observed that the effects of partially debonded particles on the stress—
strain responses are significant when the damage evolution becomes rapid. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Micromechanics; Damage mechanics; Effective elastoplastic behavior; Partial interfacial debonding; Progressive damage;
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1. Introduction

Considerable work has been published in the literature on damage in particle-reinforced ductile matrix
composites (PRDMCs). We refer to Dvorak (1991), Levy and Papazian (1991), Soboyejo et al. (1994), and
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Zhao and Weng (1995, 1996, 1997) for a literature review. Several failure mechanisms have been observed,
such as the interfacial debonding between the matrix and inclusions (Lewis et al., 1993; Whitehouse
and Clyne, 1993, 1995), the particle cracking (Lloyd, 1991), and the ductile plastic failure in the matrix
(Lewandowski and Liu, 1989; Llorca et al., 1991). The mechanism of failure apparently depends on many
factors, such as the interfacial strength, the strength of reinforcements, the manufacturing process, and the
matrix aging condition (Lewandowski and Liu, 1989).

In recent years, Ju and Chen (1994a) and Ju and Tseng (1996, 1997) developed micromechanical for-
mulations to predict effective elastoplastic behavior of two-phase metal matrix composites with random
particle locations and under general loading histories. They considered the first-order and the second-order
stress perturbations of elastic particles on the ductile matrix, and the second-order relationship between the
far-field stress 6 and the ensemble-volume averaged stress & on the basis of Ju and Chen (1994b, 1994c).
On the other hand, Tohgo and Weng (1994) and Zhao and Weng (1995) proposed progressive interfacial
complete debonding models for PRDMCs under triaxial tension. They used Weibull (1951) probability
distribution function to describe the probability of complete interfacial particle debonding. It was postu-
lated that the debonding of particles was controlled by the internal stresses of particles and the interfacial
strength parameter. Further, Zhao and Weng (1996, 1997) derived effective elastic moduli and elasto-
plastic responses of partially debonded composites using fictitious, perfectly bonded transversely isotropic
“equivalent” particles. Very recently, Ju and Lee (2000) proposed an elastoplastic-damage formulation
based on a micromechanical framework and the ensemble-volume averaging approach for PRDMCs
considering complete interfacial particle debonding. In particular, the authors predicted the overall elas-
toplastic behavior and damage evolution in three-phase PRDMCs based on the mechanical properties of
constituent phases, particle volume fractions, random spatial inclusion distributions, micro-geometry of
particles and probabilistic micromechanics.

The primary objective of the present paper is to extend the framework of Ju and Lee (2000) to assess the
effects of partially debonded particle interfaces on the overall elastoplastic-damage behavior. The partial
interfacial debonding mechanism in a PRDMC is displayed in Fig. 1. Specifically, when a PRDMC is
subjected to a uniaxial tensile loading, the particles may partially debond on the top and bottom interfaces
normal to the applied loading direction. The resulting partially debonded particles will lose their load-
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Fig. 1. A schematic diagram of a PRDMC subjected to uniaxial tension: (a) the initial state (undamaged); (b) the damaged state.
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carrying capacity along the loading direction, but will still be able to transmit stresses to the matrix in the
transverse direction through the bonded portion of the interfaces. In addition, the particles are assumed to
be elastic spheres randomly dispersed in the matrix, and the ductile matrix behaves elastoplastically under
uniaxial loading/unloading histories. All particles are assumed to be nonintersecting and initially embedded
firmly in the matrix with perfect interfaces. It is further assumed that the partial interfacial debonding is
governed by the average internal stress of a particle and the probabilistic Weibull’s parameter of the
particle-matrix interfacial strength.

This paper is organized as follows. In Section 2, we consider a transversely isotropic and perfectly
bonded fictitious particle which is “equivalent” to a partially debonded isotropic particle. The effective
elastic moduli of three-phase composites with perfectly bonded and partially debonded particles are
micromechanically derived. In Section 3, the effective yield criterion and overall elastoplastic-damage
characterization of three-phase composites are micromechanically constructed according to the ensemble-
volume averaging procedure and the first-order eigenstrain effects owing to the randomly dispersed, per-
fectly bonded or partially debonded spherical particles. An evolutionary probabilistic interfacial partial
particle debonding model is presented in Section 4 in accordance with the Weibull’s function. The proposed
probabilistic and progressive elastoplastic-damage formulation is applied to the uniaxial tensile loading in
Section 5. Finally, to illustrate the potential applicability of the proposed method, the present predictions
are compared with Ju and Lee’s (2000) and Zhao and Weng’s (1996) analytical predictions, and available
experimental data in Section 6.

2. Effective elastic moduli of three-phase composites considering partial particle debonding

When a two-phase ductile matrix composite containing randomly dispersed, perfectly bonded spherical
particles (see Fig. 1(a)) is subjected to remote uniaxial tensile loading, some particles may experience partial
debonding on the “top” and “bottom’ of the interfaces between the matrix and particles as deformations
proceed (see Fig. 1(b)). A partially debonded particle will lose its load-carrying capacity along the de-
bonded direction. Therefore, an initially two-phase composite would become a three-phase material, con-
sisting of a ductile matrix, perfectly bonded particles, and partially debonded particles. In the initial state,
the microstructure of a two-phase ductile matrix composite is assumed to be statistically homogeneous and
isotropic, with a virtually constant volume fraction of particles. However, as deformations proceed under a
uniaxial tension, the composite system progressively becomes transversely isotropic after evolutionary
partial interfacial debonding. For simplicity, we shall assume that all partially debonded spherical particles
are aligned.

Following Zhao and Weng (1996, 1997), a partially debonded isotropic spherical elastic particle is re-
placed by an equivalent, perfectly bonded spherical particle which possesses yet unknown transversely
isotropic elastic moduli. The transverse isotropy of the “equivalent” (fictitious) particle can be determined
in such a way that (a) its tensile and shear stresses will always vanish in the debonded direction, and (b) its
stresses in the bonded directions exist as shown in Fig. 2 since the particle is still able to transmit stresses to
the matrix along the bonded interfaces.

Let us start by considering a two-phase composite consisting of an elastoplastic matrix (phase 0) with
elastic (three-dimensional) bulk modulus g, elastic shear modulus y,, and randomly dispersed, perfectly
bonded elastic spherical particles (phase 1) with (three-dimensional) bulk modulus x; and shear modulus
Uo- As loading or deformations are applied, some particles could become partially debonded (phase 2), and
the overall composite system is regarded as a transversely isotropic material. By designating the 1-direction
as the axisymmetric axis and the plane 2-3 as the transversely isotropic plane, the stress—strain relation of a
typical transversely isotropic solid can be written as
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Fig. 2. A schematic representation of the equivalence between a partially debonded isotropic particle and an equivalent, perfectly
bonded transversely isotropic particle.
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0973 0 0 0 C44 0 0 2623

013 0 0 0 0 C55 0 2613

012 0 0 0 0 0 C55 2612

The components of the stiffness matrix take the form:

C C Cy —C
22; 23:k, Ch=1 Cy=n 2 23

where k is the plane stress bulk modulus for the lateral dilatation without longitudinal extension
(k = k + p/3); m is the rigidity modulus for shearing in any transverse direction; n denotes the modulus for
the longitudinal uniaxial straining; / denotes the associated cross-modulus; and p signifies the axial shear
modulus (Hill, 1964). Therefore, the stress—strain relationship for partially debonded composite can be
rephrased as

=Cy=m, Css=p (2)

1
5(022 + 033) = k(e + e33) + len

011 = l(ex + €33) + nepy (3)
02 — 033 = 2m(exn — €33)

023 = 2mer3, Opp = 2p6127 013 = 2p€13
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It can be easily shown that, by using the inverse of the generalized Hook’s law, the compliance matrix for a
transversely isotropic material may be expressed as

r_« ! !
2+kn 2(12—kn) 2(12—kn) 0 00
€ )i — P4 kn+mn 12— kn-+mn 0 0 0 011
€27 2(P—kn)  4m(—+kn)  4m(—[2+kn) 0
)i 22— kn+mn —Ptkn+mn
€3 | _ | 2P hm)  dm(—Lthn)  dm(—L-thn) 0 00 033 (4)
2e3 0 0 0 19 ol o=
2e13 0 0 0o 0 L ofl|9s
2612 4 012
0 0 0 0 0 i

For the special case of uniaxial loading o1;, Eq. (4) can be simplified as

k
—12+kn (l) 0
€ij = 0 2(12=kn) 0 g1l (5)
i
0 0 2(12—kn)

In Fig. 2, the transversely isotropic particle can be considered to be under the condition of plane stress
with the components in the 1-direction being zero. To ensure the equivalence between a partially debonded
isotropic particle and an equivalent, perfectly bonded transversely isotropic particle, the elastic moduli of a
transversely isotropic particle, with the condition 6y; = 015 = g3 = 0, can be derived as

3k —
kzZM, [2:07 ;12:07 my; = [, p2:O (6)

ki + 1wy

where the subscripts 1 and 2 refer to the phases 1 and 2 moduli, respectively.

Effective elastic moduli of multi-phase composites containing randomly located, unidirectionally aligned
ellipsoids were explicitly derived in Ju and Chen (1994b) accounting for far-field perturbations. For such a
multi-phase composite, the (first-order) effective elastic stiffness tensor C, reads

C.=C-{1+B-(1-5-B)"} 7)

where C, is the elasticity tensor of the matrix, I is the fourth-rank identity tensor, - denotes the tensor
multiplication, and the fourth-rank tensor B is defined as

B= zr:qsq(s+Aq)*1 (8)

Here, r denotes the number of particle phases of different material properties and ¢, is the volume fraction
of the ¢g-phase. The components of the Eshelby’s (1957) tensor S for a spherical inclusion embedded in an
isotropic linear elastic and infinite matrix are

1
15(1 — wp)
where vy is the Poisson’s ratio of the matrix and J;; signifies the Kronecker delta. In addition, the fourth-
rank tensor A, is defined as

Aq = [Cq — C0]71 . CO (10)

Skt = {(Svo — 1)0:;6 + (4 — 5v0) (01 + dud) } )

in which C, is the elasticity tensor of the g-phase. It is noted that the matrix and particles in formula (7)
could be isotropic or anisotropic, if the eigenstrain €*(x) is uniform in a representative volume element
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(RVE). In addition, the components of the Eshelby’s tensor S depend on the Poisson’s ratio of the matrix
and the shape of the particle domain. Consequently, the components of the Eshelby’s tensor S for a
spherical transversely isotropic inclusion embedded in an isotropic linear elastic and infinite matrix are the
same as those for a spherical isotropic inclusion given in Eq. (9).

For convenience, we introduce a transversely isotropic fourth-rank tensor F defined by six parameters b,
(m = 1-6):

Fijei (b)) = biiijigity + by (Sudijiy + duft iy + S ity + &jiiifiy) + b3dyigity + badpiiit; + bsd;;0y
+ b6(0i0; + 01101 (11)
where n is the unit directional vector and the index m varies from 1 to 6. For the equivalent, transversely
isotropic particle phase under consideration, the 1-direction is chosen as the axisymmetric direction, and
therefore we have ny =1, n, = 3 = 0.

In accordance with the notation given in Eq. (2) and the above definition of F, the stiffness tensor C, for
the equivalent, transversely isotropic particle can be represented as

CZ :Ejkl(tlvt25t37t4at57t6) (12)

where the six parameters on the right-hand side take the form:

t1 =ky+ny+my —4p, — 20, (13)
Iy = —my + P> (14)
ts = —ky +my+ I (15)
ty=—ky +my+ I (16)
ts =ky —ms (17)
te = my (18)

Since the inner product and inversion of a fourth-rank tensor F are the same as those of a fourth-rank
tensor F given in Eq. (7) of Ju and Chen (1994c), we can derive the transversely isotropic fourth-rank tensor
(S+ A,) by using the formulas provided in the Appendix of Ju and Chen (1994c). The result is

1 -
S+A; :mﬂ/kz(hhhbh%hmhsa%) (19)
where
Iy = 60(1 — vo) th —3KoKi g + 3K0K1 [y — Kooy + Kiflg/hy (20)
Mo — My 3KoK1 g — KoKy fhy + Ak oty — 4Ky oy
s
hy =15(1 —vg) ——— 21
? ( 0 Ho — Iy @)
Holy Kify — Koly
hy =60(1 —v 22
’ ( 0 Ho — My KoKy — 3KoK1 g + Aoty — Aroptopy — 4it oty @)
ha = 30(1 = w) iy KoKy — 3KoK1 iy — 2Kofothy + 21 flophy (23)

Ho — Hy 3Kok1 g — KoKy + 4Kopopy — 4K oy
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Hoky K1ty — Koty

hs = —60(1 — v
’ ( o) Ho — My 3KoK1Hg — 3ok fy + Aropgty — 4K po

+2(5v — 1) (24)

hs = —15(1 — v9) —"0— 4 2(4 — 5v) (25)

Ho — Iy

The current three-phase composite consists of the matrix, perfectly bonded particles, and partially
debonded particles (see Fig. 1). With the help of the tensor F defined in Eq. (11) together with the inner
product and inversion of F given in the Appendix of Ju and Chen (1994c), components of the effective
elastic stiffness tensor of the three-phase composite rendered by Eq. (7) can be explicitly derived as

C* :F}jk[(CI,CQ7C3,C4,C5,C6) (26)

where the components ¢y,...,cq are listed in Appendix A. In addition, the five effective transverse elastic
moduli read

ki=cs+cs, l.=cs+cs, m.=ce n.=ci+4cr+c3+cs+cs+2c6+26 p.=cr+cs
(27)

3. Effective elastoplastic behavior of partially debonded composites
3.1. The stress norm and eigenstrain formulation

Let us now consider the effective elastoplastic responses of progressively and partially debonded particle
composites. That is, an original two-phase composite may gradually become a three-phase composite
consisting of the matrix, perfectly bonded particles and partially debonded particles. For simplicity, the von
Mises yield criterion with isotropic hardening law is employed in the following. Extension of the present
framework to general yield criterion and general hardening law is straightforward. At any matrix material
point, the stress ¢ and the equivalent plastic strain e? must satisfy the following yield function:

F(o,8") = H(o) — K*(2") <0 (28)

where K (eP) is the isotropic hardening function of the matrix-only material, and H (o) = 6:14:6 designates
the square of the deviatoric stress norm. Note that Iy defines the deviatoric part of the fourth-rank identity
tensor I;i.e., Iy =1— %1 ® 1, where 1 signifies the second-rank identity tensor and “®”’ denotes the tensor
expansion.

The total strain € can be decomposed into two parts; i.e., € = €° + €P, where €° is the elastic strain of the
matrix or particle, and €P defines the stress-free plastic strain in the plastic matrix only. In this study, an
ensemble-volume averaged yield criterion is constructed for the three-phase composite. The methodology is
parallel to Ju and Lee (2000) in which the first-order effects are considered in the effective plastic response.
Moreover, small strains are assumed. Hence, the microstructure is taken as statistically homogeneous and
isotropic with a virtually constant volume fraction for the summation of perfectly bonded and partially
debonded particles during the deformation process. All particles are considered as spheres of uniform
radius a.

Following Ju and Chen (1994a), Ju and Tseng (1996), and Ju and Lee (2000), H (x|¥) denotes the square
of the “current stress norm’ at the local point x, which determines the plastic strain in a PRDMC for a
given phase configuration ¥:

6(x|9):1,: 6(x|%) if x in the matrix

H(x|9) = {0 otherwise (29)
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Further, (H), (x) signifies the ensemble average of H(x|%) over all possible realizations where X is in the
matrix phase. Let P(%,) define the probability density function for finding the ¢-phase (¢ = 1,2) config-
uration ¥, in the composite. Accordingly, we have

(H), (x)=H"+ [g {H(x|9)) — H'}P(%)d% + L {H(x|%,) — H}P(%,)d% (30)

where H' is the square of the far-field stress norm in the matrix; i.e., H° = ¢%:14:6°.
The total stress at any point X in the matrix is the superposition of the far-field stress 6° and the perturbed
stress ¢’ due to the presence of the particles; i.e, 6(x) = 6° + 6/(x), where ¢° = Cy:€” and ¢’ is defined as

' (x)=Cy: /VG(X —x):€(X)dx' + Cy : /VG(X —x'): (x)dx’ (31)

Here, €® corresponds to the elastic strain field induced by the far-field loading, €, (x') denotes the elastic
eigenstrain in the g-phase (¢ = 1,2), x’ resides in a perfect or debonded particle, and ¥ is the statistically
representative volume element (infinitely large compared with inhomogeneities and without any prescribed
displacement boundary conditions along infinite exterior boundaries). In indicial notation, the components
of the fourth-rank Green’s function tensor G are

1
8r(l — vy)r?

where r = x — x’ and » = ||r||. The components of the fourth-rank tensor F — which depends on six scalar
quantities By, B,, B3, By, Bs, B — are defined by

Gijkl(x — X/) = E»jk,(—IS, 3V0, 3, 3— 6V0, -1+ ZVO, 1-— ZVO) (32)

Fijui(Bn) = Biminjmeny + Ba(Sunyng + Sunjny + Sming + 8ning) + B3dymen; + Badymnin; + Bsd;;0p
+ Bo (0101 + 610 ) (33)

with the unit normal vector n = r/r and index m = 1-6.

The unknown elastic eigenstrain €; (x) within the g-phase can be solved by the integral equation obtained
from the celebrated Eshelby’s equivalence principle (Eshelby, 1957). Similar to Ju and Lee (2000), the
perturbed stress for any matrix point x due to a typical isolated g-phase inhomogeneity centered at xfll)
reads

o' (xx{") = [Cy- G(x —x\")] : € (34)

where 6;0 is the solution of the (elastic) eigenstrain € for the single inclusion problem of the g-phase, and

Gix —xV) = — x\dx’
G(x xq>_ " G(x — x')dx (35)

forx ¢ Qfll) in which Qél) is the single inhomogeneity domain centered at xf]l) in the g-phase. Moreover, the
elastic “noninteracting” eigenstrain € in Eq. (34) can be shown to be €;” = —(A, + S) "€ with ¢ = 1,2;
cf. Ju and Chen (1994b,c).

3.2. Effective elastoplastic characterization of partially debonded particulate composites

Since a matrix point receives the perturbations from perfectly bonded particles and from partially
debonded particles, the ensemble-average stress norm for any matrix point x can be evaluated by collecting
and summing up all perturbations produced by any typical perfectly bonded particle centered at xﬁl) and

: : (1) - : - (1) ()
any partially debonded particle centered at x, ’, and averaging over all possible locations of x;’ and x; ’. As
a result, we obtain
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(H),(x) = H® + Axi”ba {H(X\X(ll)) - HO}P(XEI))dx“) + Axg”m {H(xlx(zl)) - HO}P(X(ZU)dXU) —1(— : )
36

where P(X(ll)) and P(x21 ) signify the probability density function for finding a perfectly bonded particle

centered at x(ll) and a partially debonded particle centered at xg ), respectively. For brevity, P(xﬁl)) and

P(xg D) are assumed to be statistically homogeneous, isotropic and uniform. That is, we have P(x1 N=N/V
and P(x2 ) N,/V, where Ny and N, are the total number of perfectly bonded particles and partially
debonded particles, respectively, dispersed in a representative volume V. Moreover, due to the assumption
of statistical isotropy and uniformity, Eq. (36) can be recast into a more convenient form:

(H)m(x)%Ho—i—%/ dfl/ {H(f dA+—/ dl’z/ HO}dA+ (37)
F1>a A(ry) F>a (72)

Here, 4(7,) denotes a spherical surface of radius 7, (‘1 =1,2), witht, =x — x ) and 7, = ||t ]|.

In addition, to obtain the perturbed stress ¢’ (x|x" 1), we can perform the i inner product of F(u,,) defined
in Eq. (29) of Ju and Lee (2000) and F(v,,) previously defined in Eq. (11). Specifically, the components of
the fourth-rank tensor F* — which depends on seventeen scalar quantities wy,...,wy; — are defined as

E;kl(wnl) = ﬁtﬁ/‘pq(”m) ‘ F'qul(vm)
= [mniiiyhy + us(Oipht iy + ighjty, + 0 ity + 0j4ftifty) + U30yfipiy
+ waOpg it + us0i0pq + 16 (9ip0jg + dig0)p)]-
(17, iRy 4 02 (OpTigity + Opfigity + Ogiipity + O qifiyfiy) + V30 Mkl
+ 04047y + Vs0pg0k1 + V6(00gr + Opi0gi)] (38)
= WOty + WOy ity + Wil iy ii; + Walit ity + wsOyfiity + We Oty + w700k
+ wef iy + wo (001 + 010 1) + Wio(Oudi;fy + Oyl Ty + O yfiify + O;7imiy)
+ wii (Oymuny + Syfuii) + wia(Riiydviy + iy i iy + Ry + i i)
+ wiz(Ouhijiny + Suitjiyg + Oty + O ity ) + wia(Oudi;iy + Ouit iy + O yitifiy + Oji;fiy)
+ wis (S + Ot ) + wie (Tt ity + fgityiiii;) + wag (g iy iy + i i)
where n =¥,/7, denotes the unit outer normal vector, n is the unit directional vector, and the indices
m = 1-6, n = 1-17. The parameters wy,...,w;; are given in Appendix B.

During the ensemble average evaluation of the surface integrals, the following five different identity
groups are discovered.

(i) When the integrand [H (t,) — H°] does not have 7;, we arrive at

dA4 = 4ni2 (39)

A(#)

4 ~2
/ Pdd = 0 (40)
A(72) 3
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/ Amdd =0, m=1,35 (42)
A(#r)
(i)) When the integrand [H(t,) — H°] has 7;, we have
4 ~2
/ i dd = 22, (43)
e 3
4 22
/ i dd = % i (44)
A(Fr)
/ Wi dd =0, m=0,2,4 (45)
A(#r)
(iii) When the integrand [H (f,) — H°] has 7;i1;, we obtain
4 ~2
/ iy dd = 225, (46)
Ay 3
R Anis
v dA = 15 (2nin; + 0y;) (47)
A()
idn n 4ni
A dA = 35 (4nn; + 05) (48)
A(72)
/ it dd =0, m=1,3 (49)
A(#2)
(iv) When the integrand [H (f,) — H°] has #;i;ii;, we write
4 =2
/ ﬁ]ﬁiﬂjﬂde == 7U”2 (2}71,7711 + 5ij)ﬁk (50)
A(#2) 15
da n i -
nln,-nl,-nde = ? (4}1,‘7’1/' + (S,'j)nk (51)
A(#r)
/ it dd =0, m=0,2,4 (52)
A(72)
(v) When the integrand [H (f,) — H°] has #,7;7,7,;, we obtain
A 4ni?
/ nn;nin; dA = 1—52 (51‘/51{/ + 5ik5jl + 5i15_jk) (53)
A(72)

By using the above five identity groups, the perturbed stress rendered by Eq. (34) and the inner product
of the fourth-rank tensor F* in Appendix C, the ensemble-averaged current stress norm at any matrix point
(see Eq. (37)) is derived as

(H),(x)=6":T":q" (54)

Here, the components of the positive definite fourth-rank tensor TP read
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"

o= Ty iingig + Ty (Ouitjig + Ouii + 0 iy + 0 i) + T3 Oyin, + T} O + T3 00k

+ T3 (8401 + 60 ) (55)

in which the parameters 77, ..., 7y are rendered in Appendix D.

The ensemble-averaged current stress norm at a matrix point can be expressed in terms of the macro-
scopic stress 6. Similar to Ju and Chen (1994a), the relation between the far-field stress ¢° and the mac-
roscopic stress & takes the form

o' =P": ¢ (56)
where the components of PP read
Bl = Pl + Py (dudtjy + Ouftjity + Optiity + 0y ) + Py Oyigity + PJ Syt + P§0y;0p
+ P§ (001 + 0u0j) (57)
and the parameters P}, ..., Py are summarized in Appendix E.

Combination of Egs. (54) and (56) then leads to the following expression for the ensemble-averaged
current stress norm (square) in a matrix point:

(H), (x)=6:T": 5 (58)
where the positive definite fourth-rank tensor TP is defined as
™= (P . T° . PP (59)
and takes the form
T;kl = Tlpfl,'fljflkfll + sz(éikﬁjfl] + 5i177ljl7lk + 5_/'1(’711'771[ + 5_/'17711"7”() + Tféi/ﬁkﬁl + Tféklﬁiﬁj + TSP&:/&H
+ TP (0ubj1 + 010k (60)
where
TP = 4PPPPTY + 8(PP +2P) + PY)(PYTy + PPTY + PYTY) + (PP +4P) + 3P))
X (PPTY +4PYTy + PYTY + 2PPTY + PPTY + 4PYTY + 3P)TP + 2PPTY) + (PP + 4P) + PY + 2PF)
X 2PTY + 4P (T7 + 215 + 1) + Py (T + 4T3 + 3T3) + P (T + 415 + T3 + 2T7)] (61)
TP = 4(PYPYTY 4+ 2PYPYTY + PYPYTY + PYPYTY + 2PV PPTY) (62)
Ty = APYPJTY + (P +4P) + 3P)) (PYT) + PYT) + PYTY + 3PPTY + 2P TS + 2PYTY)
+ (PP +4P) + P + 2R 25T + P17 + 4T7 + 3T3) + P (T} + 4T3 + T3 + 21¢)] (63)
I} =APJPT) + 8(P) + P))(PYTY + POTY + PYTy) + (Py 4 3PY + 2P0 ) (PU Ty + 4PV Ty + Py T}
+2PPTY + PPT? + 4PYTY + 3PYTY + 2PYTY) + (P + PD)2PYTY + 4PV (T + 2175 + 1Y)
+ P(TY +4T) + 3T%) + PP (T7 + 4T3 + Ty + 2T7)) (64)
T9 = APYPITY + (P + 3P5 4 2F))(PYT) + PYT) + PYTS + 3PYTY + 2P0 TS + 2PY 1Y)
+ (B + PORETS + P17 + 4T + 3T7) + P (17 + 4T, + T3 + 217)] (65)

TP =4PPPPTY (66)
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Furthermore, the ensemble-volume averaged “current stress norm” for any point x in a three-phase
particulate composite can be defined as

HX) =(1-¢)Vo:T 6 (67)

where ¢, denotes the current volume fraction of perfectly bonded particles. Therefore, the effective yield
function for the three-phase PRDMC can be proposed as

F=(1-¢)%:T:6—K) (68)

with the isotropic hardening function K (e?) for the composite. It is noted that the effective yield function is
pressure dependent and not of the von Mises type. Moreover, for simplicity, we assume that the overall flow
rule for the matrix is associative. Accordingly, the effective ensemble-volume averaged plastic strain rate for
the PRDMC can be expressed as

- A aF N —
ep:/h§:2(l—¢l)2/LTp:6 (69)
in which /1 denotes the plastic consistency parameter.
Similar to Ju and Lee (2000), the effective equivalent plastic strain rate for the composite is defined as

. 2. . O
& = §éP;TPH):ép:2(1—q§1)22 ga;Tp;a (70)

The ensemble-volume averaged yield function in Eq. (68), the averaged plastic flow rule in Eq. (69), the
equivalent plastic strain rate in Eq. (70), and the Kuhn-Tucker conditions completely characterize the
effective plasticity formulation for a composite material with any isotropic hardening function K(e?). It is
feasible to extend the proposed model to accommodate kinematic hardening. In the following, the simple
power-law type isotropic hardening function is employed as an example:

K(e") = \E{ay + h(ép)’?} (71)

where oy is the initial yield stress, and & and g define the linear and exponential isotropic hardening pa-
rameters, respectively, for the composite.

4. Evolutionary probabilistic interfacial debonding

The progressive, partial interfacial debonding may occur under increasing deformations and affect the
overall stress—strain behavior of PRDMCs. After the interfacial debonding between particles and the
matrix, the debonded particles lose the load-carrying capacity along the debonded direction only and are
regarded as partially debonded particles. Within the framework of the first-order (noninteracting) ap-
proximation, the stresses inside particles should be uniform. Following Tohgo and Weng (1994) and Zhao
and Weng (1995, 1996, 1997), we employ the average internal stress of a particle as the controlling factor.
The probability of partial particle debonding is modeled as a two-parameter Weibull process; see, e.g.,
Tohgo and Weng (1994), and Zhao and Weng (1995). Assuming that the Weibull (1951) statistics applies,
we can express the cumulative probability distribution function of particle debonding, Py, for the uniaxial
tensile loading (in the 1-direction) as

Ri(ou)] =1 - exp [ (%) ] )
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in which (&), is the internal stress of particles (phase 1) in the 1-direction, the subscript (-), signifies the
particle phase, and S, and M are the well-known Weibull parameters.
Therefore, the current volume fraction of partially debonded particles ¢, at a given level of (611), is given

by
¢>2:¢Pd[<au>l1:¢{1—exp[— (%) H 73)

where ¢ is the original particle volume fraction.

The formulation of the internal stresses of particles needed to initiate particle debonding was previously
investigated by Ju and Lee (2000); see Eqgs. (61)—(68) therein. Here, as the simplest way among other
possibilities to extend the above to triaxial loading, we could employ the major principal tensile loading
direction (following a simple transformation at each loading step) as the 1-direction under triaxial loading
histories. However, in a more general, variably multi-axial loading history in which the major principal
tensile direction could change from step to step, we would have to perform new orthotropic or anisotropic
formulation in Section 2 (instead of transverse isotropy).

5. Elastoplastic stress—strain relationship for partially debonded three-phase PRDMCs

In order to illustrate the proposed micromechanics-based elastoplastic damage model for PRDMC:s, let
us consider the example of uniaxial tensile loading here.
The applied macroscopic stress & can be written as

o1 #0, all other 6; =0 (74)

With the simple isotropic hardening law described by Eq. (71), the overall yield function reads

F@,e) =(1—¢) T &—%{ay—i—h(ép)q}z (75)

Substituting Eq. (74) into Eq. (75), the effective yield function of partially debonded three-phase PRDMCs
under the uniaxial loading is obtained as

_ _ _ _ _ _ _ 2 N2
F= (1= (TP +4T0 + T + T} + T2+ 210)3%, — < {0y +h(@)' | (76)

The macroscopic incremental plastic strain rate defined by Eq. (69) becomes

TP +AT + T + 1) + T3 + 277 0 0
Ae? = 2(1 — ¢,) Adéy, 0 TP+ 1P 0 (77)
0 0 w+17

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be written
as

i 2 - e A —
Ae’ =2(1 — (/>1)2A/L|(711|\/§(T1p +4TY + Ty + T) + TP + 2T7) (78)

From Eq. (5), the macroscopic incremental elastic strain takes the form
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71%1{:/(*71* 0 O

A€ = 0 sEto 0 |Aay (79)
Ly
0 0 2(12—kens)

Furthermore, the total incremental strain is the sum of the elastic incremental strain and plastic incremental
strain.

By enforcing the plastic consistency condition £ = 0, the nonlinear equation is obtained for the uniaxial
loading case as (cf. Eq. (78)):

(1 — ¢\ (TP + 4T + TP + TP + TP 4 2T1)3,

5{a

(g
2 - - _ _ _ _
2(1 - d)l)zAl\/g(T,p +4T + T3 + Ty + T3 + 215|614 (80)

where the superscript i denotes the ith time-step value of a parameter.
In the case of a monotonic uniaxial tensile loading, the overall uniaxial stress—strain relation can be
obtained by integrating Eqs. (77) and (79) as follows:

i

e 0 0
€= Z 0 2(/%3@71*) 0 Aaﬂ
’ 0 0 S GEr
TP 4T TP TP+ TP 421 0 o\
+23 711 - ¢,)°A% G0 0 T+TP 0 (81)

0 0 7+ 17

The computational integration algorithms employed in this paper are very similar to those in Ju and Lee
(2000); see Tables 1 and 2 therein. Therefore, we will not repeat the details here.

6. Numerical simulations and experimental comparison

In order to illustrate the influence of partially debonded particles on the behavior of ductile matrix
composites, the present micromechanics-based predictions with varying Sy values are compared with the
predictions of Ju and Lee’s (2000) complete particle debonding model (cf. Figs. 3 and 4) and Zhao and
Weng’s (1996) damage model (cf. Fig. 5). Specifically, Fig. 4 exhibits the evolution of volume fractions of
partially debonded particles versus the uniaxial strains, which is corresponding to Fig. 3. For convenience,
we adopt the same material parameters for the 6061-T6 aluminum alloy matrix/silicon-carbide particle
composites as those used in Zhao and Weng (1996); see also Arsenault (1984), and Nieh and Chellman
(1984). Therefore, we have E, = 68.3 GPa, vy = 0.33, E; =490 GPa, v, =0.17, g, = 250 MPa, h = 173
MPa, g = 0.55, M = 5, and ¢ = 0.2. From Figs. 3 and 4, it is clear that the influence of partially debonded
particles on the overall elastoplastic-damage behavior is more pronounced if Sy is low. Further, higher
interfacial strength parameter S, leads to higher stress—strain response. From Figs. 3 and 5, it is observed
that the present predictions differ from those in Zhao and Weng (1996) due to the nature of two different
formulations.
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Fig. 3. The comparisons of predicted elastoplastic responses of PRDMCs between the present partially debonded damage model and
Ju and Lee’s (2000) completely debonded damage model with evolutionary debonding mechanism under uniaxial tension with ¢ = 0.2,
M =5 and various S, values.

To assess the potential of the present framework further, we compare the present predictions with the
experimental data reported by Llorca et al. (1991) for the uniaxial stress—strain behavior of Al-Cu matrix
with SiC particulate composites. Here, we employ the same elastic properties according to Llorca et al.
(1991) as follows: Ey = 71.8 GPa, vy = 0.33, E; =450 GPa and v; = 0.17. Both ¢ = 6% and 13% are
considered. Since the proposed effective plasticity model is different from that used in Llorca et al. (1991),
we need to estimate the plastic parameters 6y, & and g given in Eq. (71). Moreover, to implement the
Weibull evolutionary debonding model, we need to estimate the two Weibull parameters S, and M. Here,
we follow the parameter estimation algorithm developed by Ju et al. (1987) and Simo et al. (1988) to de-
termine the proper values of gy, /1, g, Sy and M. Based on the experimental data documented in Llorca et al.
(1991), we estimate the above plastic and Weibull parameters to be: gy = 169 MPa, h = 463.24 MPa,
g = 0.39252, Sy = 3868.41 MPa, and M = 5; cf. Ju and Lee (2000).

On the basis of the above material parameters, the present theory considering the partial debonding
mechanism is exercised against the experimental data provided by Llorca et al. (1991) for the two uniaxial
tests displayed in Fig. 6. Specifically, we consider various uniaxial stress—strain responses with and without
the evolutionary debonding mechanism in Fig. 6. It is observed that the responses with the partial inter-
facial debonding model are lower than those without the damage mechanism. Furthermore, higher particle
volume fraction leads to more significant differences between the partial debonding and perfect bonding
models.
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Fig. 4. The predicted evolution of volume fractions of partially debonded particles corresponding to Fig. 3.
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Fig. 5. Zhao and Weng’s (1996) predicted elastoplastic responses of PRDMCs with evolutionary debonding damage under uniaxial

tension with ¢ = 0.2, M = 5 and various S, values.
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Fig. 6. The comparison of the present predictions with experimental data (Llorca et al., 1991) for overall uniaxial tensile responses of
PRDMC:s at initial particle volume fractions of 0.06 and 0.13.
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Fig. 7. The comparison of predicted evolutionary overall elastoplastic responses of PRDMCs between the present partial debonding
model and Ju and Lee’s (2000) complete debonding model with weaker interfacial strength S, = 100 MPa and ¢ = 0.2.
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Finally, to further investigate the influence of partially debonded particles on the overall elastoplastic-
damage stress—strain responses, the value of the Weibull parameter S, (which governs the interfacial
bonding strength) is decreased from 3868.41 to 100 MPa. Fig. 7 renders the numerical comparison between
the proposed partial debonding model and Ju and Lee’s (2000) complete debonding model with ¢ = 20%.
Clearly, in comparison with the present formulation, the complete particle debonding model of Ju and Lee
(2000) gives rise to substantially weaker overall stress—stain response when the interfacial bonding strength
is lower and the particle volume fraction is higher.

7. Conclusion

A micromechanical elastoplastic-damage model considering progressive partial particle debonding is
proposed to predict the overall stress—strain response and damage evolution of three-phase PRDMCs. To
meet the characteristics of partially debonded interfaces, a partially debonded particle is replaced by an
“equivalent”, perfectly bonded transversely isotropic particle. The effective elastic moduli of the compos-
ite are then micromechanically derived. To estimate the overall elastoplastic behavior, an effective
damage-yield criterion has been assumed and written in terms of quantities which are derived via mi-
cromechanics, based on the ensemble-volume averaging procedure and the first-order effects on eigenstrains
due to elastic spherical inclusions. The resulting effective elastoplastic-damage-yield criterion, together with
the assumed overall associative plastic flow rule and the hardening law, provides the basic foundation for
the estimation of effective elastoplastic-damage behavior of PRDMC:s. It is emphasized that the effects of
random dispersion of inclusions and evolutionary partial particle debonding are considered in our frame-
work.

Moreover, the effective elastoplastic behavior of partially debonded PRDMC:s is investigated to assess
the influence of partially debonded particles on the overall constitutive behavior. A damage mechanism
based on a Weibull’s statistical function is proposed to characterize the probability of partial particle
debonding. The proposed elastoplastic-damage model is applied to the special case of uniaxial tensile
loading to predict the corresponding stress—strain responses. The present results are compared with Ju and
Lee’s (2000) predictions considering complete particle debonding, Zhao and Weng’s (1996) theory, and the
experimental data reported by Llorca et al. (1991).

From Fig. 6, it is observed that the predicted overall stress—strain behavior of PRDMCs featuring partial
particle debonding is in good qualitative agreement with the experimental data. In addition, when the
interfacial particle bonding strength S, is weak and/or the initial particle volume fraction ¢ is medium, the
influence of partially debonded particles on the overall stress—strain responses are rather significant. This is
due to the relatively rapid damage evolution corresponding to weaker interfacial strength and/or higher
volume fraction of debonded particles. By contrast, if the interfacial strength is high and the particle
volume fraction is low, then the effects of partial particle debonding are not pronounced when compared
with the complete particle debonding model or even the perfect bonding model.
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Appendix A. Parameters c;,. .., ¢s in Eq. (26)
The parameters in Eq. (26) take the form:

a1 =2e1lyy, c2=2e,, c3=_(e1+4e;+3e3)(ko— %,uo) + 2e31y, ¢4 = 2eqty,

Cs = e4kg + 3esko + 2ecko — 3eatly — 3esko,  Co = 26kl (A.1)

Here, we have

er = 30(1 —vo) [ (j1 + 42+ ds + 2js) 19y + 401 + 2/ + j3) 2y + (1 + 4j2 + 3/3) fadpy + 21 (% +f6¢zﬂ

(A2)
ey = 30(1 — vp) j;(gl + 2j2 /2605 + 2j6f2P> + 212f6¢2} (A.3)
e3 = 30(1 —wo) |1 +4j2 +j3 + 2j6) fahy + (1 + 42 + 3j3)< o ﬂi“ﬁ +f5¢z> +2j3<%+fe¢z>]

(A4)

ex = 3001 =) U + i + 40 4 )b + Us ot 375+ st + 2 ok i) (a9
es = 3001 = o) |G+ )it + G+ 35+ 200~ P o) + 2 o so) | (a6)
! 60(1 il A7
— 546001 =)o 5+ s | (A7)

where the parameters fj,...,fs are the parameters of the fourth-rank tensor Eik,(fh 2, /5, fa, f5, f5) which
is the inverse tensor of E/kl(hl,hz,h37h3,h5,h(,) given in Egs. (20)-(25). Furthermore, Jis-- -6 are the

parameters of the fourth-rank tensor Fju,(ji, 2, /3, /4, /s, js) Which is the inverse tensor of F (g1, 82, g3,
g4, 85, 86) with the following parameters:

g1 = —4/i(4 = 5w)p, (A.8)

g = —4/2(4 = 5v)9, (A.9)

=2(=f1 =42+ 5/3+ 5/ivo + 20/2v0 + 5f3v0) 5 (A.10)

g4 = —4f4(4 — 5v) 9, (A.11)
- OC(4 SVO) ¢ R

g5——2{ 3n ﬁ+2ﬁ2 ¢ + (5"0—1)(2_;_6 ﬂ+4ﬁ2¢1+f4¢2+2f6¢2>} (A.12)

g3 464 5)(§r-4 1) (A13)
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Appendix B. Parameters wy,. .., wy7 in Eq. (38)

The parameters in Eq. (38) are explicitly expressed as

w1 = 3usvy + 2ugV4 + ugvq + dusvy + usvy + u4vlfzf (B.1)
Wy = 2ugs (B.2)
w3 = 3u3v4 + durvg + uyvs + dusvy + uzv, + ulvlfz% (B.3)
wy = 2ug0; (B.4)
ws = 2u30¢ + 3u3vs + 2uaUs 4 uvs + 2urvs + uzv3 + ulvgﬁf (B.5)
Wwe = 2u40 (B.6)
Wy = 2usvg + 3usvs + 2ugls + ug0s + Usvs + Ugvit (B.7)
wg = 2u, Vg (B.8)
wo = 2u4Us (B.9)
Wio = 2UsVs (B.10)
wi = 2uyv3iy (B.11)
Wia = 2us0y (B.12)
Wiz = 2ugls (B.13)
Wia = 2ur0ai (B.14)
Wis = 2u4ofy (B.15)
Wie = 2u 027 (B.16)
w17 = 2uv i (B.17)

Appendix C. The inner product of the fourth-rank tensor F*

The inner product between two fourth-rank tensors F*(4,,) and F*(B,), m = 1-17, can be shown to
follow the rule:

F:z.bcd (Qn) = F:z*bpq (Am) ’ F;ch (Bm) (C 1 )

where F* is defined in Eq. (38). The components of the fourth-rank tensor F* take the form (n = 1-21)



JW. Ju, HK. Lee | International Journal of Solids and Structures 38 (2001) 6307-6332 6327

Freq = Q1itaitydea + Ooficiadan + Q3fafipiiciia + Qa(faliiiciia) + Osiichaiiaiy + Qs (Raltpiiai
+ Aaitplicig) + Q1 (Rcigiipity + Aefafiaity) + Qg (fafl-Opa + MaftqOpe + ipiicOaq + MipfigOac )
+ Q9(fahicipig + Ralahphe + Rpiiciahg + piaiiahce) + Q1ofafiydca + Orifichadap
+ O12(AiaicOpa + RaftgOpe + MpitcOuq + Mpiigc) + O13fiaitphicitg + Qra(Aahiphiciiy + Aghipiigi,)
+ Ois5(n
+ Q18 (7a1cOpq + MallgOpe + Mpiic0uq + Mpfigdac) + Q19(AcTaOpa + MallaOpe + NeltpOaq
+ faiindac) + 0200as0ci + 021 (0acOpa + daadic) (C2)

Naftaiy + feitgipfy) + O16(Aafip0cq + Mpig0ea) + Q17 (AciigOap + falicOup)

Here, the components Oy, ..., 0, read

O1 = A3B) + AsBy + 4414815 4 2416B15 + 4410Bs + AsBs + AsBs + 249Bs + 441087 + A3B;
+ 345B7 + AgB7 + 2A5Bg + 241681711 + 441081571 + 24381501 + 245B sy + 243B1siy
+ 4A414B¢ny + 2416Bgiy + 2A416B71; +A331fl% + 2A]6B]5ﬁ% + A3B6fl% (C3)

Qz = 4A4¢B1o + 4A47:B19 + 4A415B14 + 2415B1¢ + A1B3 + A7B3 + A1Bs5 + AgBs + 34785 + 249B5
+ A¢Bg + A7Bg 4+ 24¢B9 + 4A5B1oi) + 4468147 + 24181671 + 2A46B 1671 + 247B 161
+ 24,5B3iy + 24,5Bsiy + 24,5Bgiy + 24,5Bysit} + AgBsitt + A, Bgits (C.4)

03 = 445810 + 443B10 + 4416814 + 4414B16 + 2416B16 + A3B3 + AsB3 4 441085 + A3Bs + 34585
+ AgBs + 4A410Bs + AsBg + AsBg + 249Bg + 243 By + 4A416B1o71 + 443 B14ny + 4410B1671
+ 243B16i + 245B 67y + 243B16i11 + 2A16B3iy + 2A16Bsiy + 4414Bgiy + 24,6831,
+ 2416B16t} + AsBsit} + A3Bsity + 8410B1o (C.5)

O4 = 443B15 + 445813 + 4410By + A3By + 3A45By + AsBy + A3By + AsBy + 2438y + 44,6B 137y
+ 2416Baity + 2416Baity + AgBaity (C.6)

Qs = 44,810 + 441385 + AyBs + A4Bs + 249B3 4+ 4413Bs + 34285 + AsBs + A, Bs + 44138611
+ 24,Bygiy + 244B 16711 + AyBgity (C.7)

Qs = 2416810 + 4410B11 + A3B1y + 345B1 + AgB11 + Ai6Bio + 2416B13 + 243B14 + 245B14 + 43817
+ AsBi7 + 24168y 4 243B10ity + 2416B 1171y + 24381501 + 245B1aiy + 243B1ainy + 243B13i
+ 2416B 14ty + 2416B17ity + 2416B 1ot + AsBiaitt 4+ 2(2410B14 + 2413B14 + 2412B1oiy) (C.8)

07 = 4411B1o + 2410B16 + 2412816 + 2413816 + 249B16 + A1183 + 241483 + A17B3 + 3411Bs5 + 241485
4+ A17Bs + A1 Bs + 2411B ity + 2414B16i1 + 2417B 16 + 2410837, + 24128311, + 2412851,
+ 241,Bgity + 2413Bgity + 2412B16i3 + Ay7Bsitt + 4(A10B1a + A12B1a + A12Broiy) (C.9)

O = 2A419B19 + 249B1o + 2414814 + 2410Bg + 2414810711 + 24108147 (C.10)
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Qg = 2413B1o + 2413B10 + 2410812 + 2412B15 + 2413815 + 249B1> + 2410B13 + 2415813
+ 241289 + 2414Bpi1y + 2415B14iy + 3411811 + 241481 + AyBi 4 2411814 + 2417814
+ A1 Bi7 + 2414B17 + A11B7 + 241B1ofiy + 24128117y + 2411B iy + 2417B1iy
+ 2410B17i1 + 2412B1771y + 2414B14 + 24 10B 1oy

Q10 = 4413B) + A;B) + AyB) + 249B) + AyBg + 44,387 + 34,87 + A4B; + 24,By + 44,3B 5,
+ 24,Bsity + 244B1s5ity + AyBgit

On = 441B13 +447B13 + A1By + AsBy + 34783 + 2A9By + A1By + A1B4 + 24, By + 4458137,
+ 2415Baity + 2415Baity + AgBaity

Q12 = 2413B13 + 249B13 + 2413By

Q13 - 4AzB13 + 4A4B13 + 4A13Bz + 3A232 +A4Bz + 4A13B4 —|—AzB4 —|—A4B4 + 2A()B4 + 2A4Bg
+8413B13

O1s = 4413811 + 342811 + A4By1 + 245814 + 244814 + 4413817 + A2B17 + AaBr7 + 249B15
+ 244B1oiy + 245B 1oy + 244B1oiy + 4(A13Bis + A13Biaiy)

Ois = 4411B13 + 4417813 + 34118 + 2414B> + A17B2 + A11Bs + 2414B4 + A1784 + 24178
+ 2412Boi + 2A410Baity + 2415Baity 4+ 4(413B14 + A13B1aiiy)

Oi6 = AnB1 + 2414B) + A17B1 + 2410815 + 2412815 + 2413815 + 249B15s + 411 B¢ + 341157
+2414B7 + A17B7 + 2411By + 241081711 + 241281711 4 241181571 4 24148151,
+ 2A417Bysity + 2412Bgity + 2413Bgiy + 2412877 + 241,B) 577 + A7Beit}

O17 = 2415B1o + A1B11 + AB11 + 347811 + 249811 + 2415B15 + 2415B13 + 241 B14 + 247814
+ A1B17 + A71B17 + 2415By 4+ 24, Boiiy 4 2415811711 + 241B1aity 4 246Braity + 247B12i
+ 246B13i1y + 24,15B 14ty + 2415B7iy + 24,5B 10t + AgBit

O1s = 2413B14 + 249B14 + 2413B1oi
Q19 = 2414B13 + 24148y + 2419B 1371,

Oy = A1B1 + A7B1 + 2415B15 + AsBs + A7Bs + A1B7 + AsB7 + 34787 + 249B7 + 2478
+ 2415B 11y + 24,1Bsny + 246B15n + 247Bsiy + 2415Ben; + 24,5871, +A6B1fl%
+ 24,5Bysit; + A1 Bgi;

01 = 2498y

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)
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Appendix D. Parameters T},...,7T; in Eq. (55)

The parameters in Eq. (55) are given by

1680
P = ;{)52{ 7 (ay + Saq) o + 2880/1(2)(761% + 56a,a; + 28a§ + 22aya4 4 42a,a6 + 26ara6 + 30a4as)

+ 13440;13( — 3a% —24aa, — 12a§ + 24asa4 — 18asas — 18ajag — 26ara¢ — 10asa¢ + 6azasvy
— 18azasvy — 8ayagvy — dasagvo) + (ZSa% + 200a;a, + 160a§ + 30a a3 + 120asa; + 45a§
+ 200aza4 + 240aras + 120a a6 + 220ara¢ — IOafvo — 80ajarvg + 80a§vo + 60a;aszvy
+ 240a,a3vg + 90a§v0 — 80arasvy + 120azasvy — 120a1a¢vy + 80aragvy + 120asa4vy

+19a}v; + 152a,a,v% + 136a3v; + 30aya3vy + 120ara3v; + 45a3v; — 28aza,v;

5600
— 120aa5v; + 84araqy] — 104aaev] — 60asas}) == Ko } (D.1)

2735 2
11200
2

252
Tp = ¢ { > Oaz,uo + 1440612(153&2 + 194616),u0 + 6720(12,&0( 67612 — 6&(, + 202\10 — 108616\/0)

612/,[0(80(12 + 40616 90612\)0 — 100616\)0 + 61(12\16 + 17861611(2))} (D2)

84
TP = %{ 8200 ayuy + 2880u§(7a1a4 + 17aza4 — Tayas — 13aza6 + 6asas) + 13440,ué( — 3ajas + 9asas

+ 3(1]06 — 7(12616 — 4614616 — 3612(14\/() + 9a2a5v0 + 32(12616\)0 + 2614(16\)0) + (25611614 + 15613614
+ 15a1a5 — 60(12(15 + 45a3a5 — 1001616 + 30(12(16 —+ 30113616 —+ 60(1406 — 10[11614\)0 + 30(23[14\)0
+ 30ajasvy + 60arasvy + 90asasvy + 40a agvy + 60azagve — 120asa4vy + 19a1a4v§

+ 90612&4\)3 + 15613614\% + 15&1615\)3 + 12061205\)(2) + 45(13(15\% — 4(1161(,\% — 4802&(,\)3 + 306130(,\)3

5600
+ 72614616\)0) 3 ,MO } (D3)

—8400
TP = %{ 5 aspy + 2880(7ayas + 17a2a4 — Tajas — 13aza6 + 6a4a6),u(2) + 13340,11(2)( — 3aja4 + 9asas

+ 3(1]616 — 7a2a6 — 4614616 — 3612(14\’0 + 9a2a5v0 + 32a2a6v0 + 2a4a6v0) + (2501&4 + 15a3a4
+ 15a a5 — 60ayas + 45azas — 10a;a6 + 30ara6 + 30azag + 60asas — 10ajasvg + 30azasvy
+ 30aasvy + 60asrasvy + 90azasvy + 40aasvy + 60azagve — 120asa6vy + l9a1a4v(2)

+ 90a2a4v§ + 15a3a4v§ + 15a1a5v§ + 120a2a5v(2) + 45a3a5v§ - 4a1a6v§ - 4802a6v§

+ 30a3a6v0 + 72614&6\)0) 56()30M0 } (D4)
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40320
TP = 3 ;b; { 3 (@i — 2aqas — 2al) gy + 4032002 ( — a2 + 2aqas + 2a2) + (25a; + 30aqas
+ 45a5 — 20a4a¢ + 60asas — 20aé — IOaivo + 60agasvy + 9Oa§v0 + 80agagvy + 120asagvy
560043
+ 80advg + 19373 + 30asasy] + 45a3v; — 8asacy} + 60asaq} — 8aivi) = al }
200
Nt § N 2V0)2L 2(23 — 50vy + 35v2) 2L d (D.5)
3 (30 + 2/3) B’
1 —4200 66
P = 5 f—s { 5 agly + 99360(16/13 + 6720a2,u(2)( —3142v) + 5600a§,u(2)(40 — 50vy + 7v§)}
+ (23 — 50vg + 35v2) ‘;" (D.6)
In the above equations, the parameters ay,...,a¢ are given by
o D7)
a = )
! 8he(hy + he)(—h3hs + hihs + 4hyhs + hyhe + 4hahe + hihe + hahe + 3hshe + 2hehs) 1
—hy
b =—=" D.8
? 8h6(h2 + hﬁ),uo ( )
o — —h3hy + hihs + 4hyhs — 2hshg (D 9)
T 8he(—h3hya + hihs + dhyhs + hihe + 4hahe + hshe + hahe + 3hshe + 2hehs ) 1 '
R
ag = (DlO)
72h6(_h3h4 + hihs + 4hyhs + hihg + 4hyhe + hshg + hahg + 3hshg + 2h6h6)1<0,u0
3
as = (Dll)
72/’16(—h3h4 + hll’l5 + 4/’!2/’15 + h1h6 + 4h2h6 + h3h6 + h4h6 + 3h5h6 + 2h6h6)K0,u0
_ ! (D.12)
U Bhoty '
and the coefficients .o/,% and % read:
oA = —hyhshy + hihohs + dhahohs + 2h hahg + 8hahahg + 4hohshg + 4hohshg + 3hshahg
— 3hihshg — 2hihehg (D.13)

B = —9/’l3h4K0 + 9h1h5K0 + 36h2h5K0 + 6h1h51€0 + 24h2h6K0 — 4/’!1}15#0 — 16}12}16/10 — 12[’!4}16#0 (D14)
E = +9h3h4K0 — 9h1h5K0 — 36h2h5K0 — 6h1h6K0 — 24h2h6K0 — 6h4h6K0 — 18h5h(,K0 — 12h6h6l€0
+ 4y hepty + 16hahety + dhaheity + 8hehelt, (D.15)
Appendix E. Parameters P!, ... P} in Eq. (57)

The parameters P},..., Py in Eq. (57) are the components of the fourth-rank tensor Fiy (P}, PY, ¥,
PP, PP, PP), which is the inverse of F i (dy, da, dy, dy, ds, dg), with the following components
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D(=T4 5v) ¢,

g — E.1
! 2h6(hy + he)(—hshs + hihs + 4hyhs + hyhe + 4hohe + hshg + hahe + 3hshe + 2hY%) (51
ha (7 — 5v) s
= “re E.2
T 26y + ho) "
dy = 60, (E.3)
2he(—h3hy + hihs + 4hyhs + hihg + 4hahe + hahe + hahg + 3hshg + 2h2)
. (—hshy + hihs + 4hshs — 2hahe) (=T + 5v) (E.4)
4 2h(—hshy + hihs + 4hahs + hihg + 4hahe + hshe + hahe + 3hshe + 2h2) '
o = (ZT724 2B + Savg — 10Bvo) ¢,
’ 30 + 2
N 7 ¢, (E.5)
— 2 -
2ho(—hshy + hihs + 4hahs + hihg + 4hahe + hyhs + hahe + 3hshe + 2h2)
g 1 (7 — 5v0) ¢, N (=7 + 5v0) s (E.6)

2 2p3 2hg
Here, the coefficients &, & and & read

G = —hyhshy + hihyhs + h3hs + 2hyhahg + 8hhe + 4hohshg + dhyhshs + 3hshahs — 3hyhshe + 2h b2

(E.7)
&= 7h3h4 — 7h1h5 — 28h2h5 + 2/’11h(, + 8h2h6 + 20/’13}1(, — 5h3h4V0 + 5h1h5V0 + 20h2/’l5V0
— 10h1h6V0 — 40h2h6V0 — 4Oh3h6VO (ES)
F = —Thshy + Thihs 4+ 28hyhs — 2hhe — 8hyhe — 2hshe + 14hshe — 4hé + Sh3hgvy — Shihsvg
— 20]’[2[15\)0 + 10h1h6V() + 40h2h6V() + 10h3h6V0 — 10]’!5]’!6\1() + 20}[2\)0 (Eg)
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